Introduction To Algorithms

Introduction To Algorithms
by Thomas H.. Cormen, Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein

The first edition won the award for Best 1990 Professional and Scholarly Book in Computer Science and Data Processing by the Association of American Publishers.

There are books on algorithms that are rigorous but incomplete and others that cover masses of material but lack rigor. Introduction to Algorithms combines rigor and comprehensiveness.

The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

The first edition became the standard reference for professionals and a widely used text in universities worldwide. The second edition features new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming, as well as extensive revisions to virtually every section of the book. In a subtle but important change, loop invariants are introduced early and used throughout the text to prove algorithm correctness. Without changing the mathematical and analytic focus, the authors have moved much of the mathematical foundations material from Part I to an appendix and have included additional motivational material at the beginning.


Introduction to Algorithms
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow.

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.


Algorithms Unlocked
by Thomas H. Cormen

For anyone who has ever wondered how computers solve problems, an engagingly written guide for nonexperts to the basics of computer algorithms.

Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves into your GPS, your laptop, or your smart phone? This book offers an engagingly written guide to the basics of computer algorithms. In Algorithms Unlocked, Thomas Cormen—coauthor of the leading college textbook on the subject—provides a general explanation, with limited mathematics, of how algorithms enable computers to solve problems.

Readers will learn what computer algorithms are, how to describe them, and how to evaluate them. They will discover simple ways to search for information in a computer; methods for rearranging information in a computer into a prescribed order (“sorting”); how to solve basic problems that can be modeled in a computer with a mathematical structure called a “graph” (useful for modeling road networks, dependencies among tasks, and financial relationships); how to solve problems that ask questions about strings of characters such as DNA structures; the basic principles behind cryptography; fundamentals of data compression; and even that there are some problems that no one has figured out how to solve on a computer in a reasonable amount of time.


Introduction to Algorithms
by Udi Manber

This book emphasizes the creative aspects of algorithm design by examining steps used in the process of algorithm development. The heart of the creative process lies in an analogy between proving mathematical theorems by induction and designing combinatorial algorithms. The book contains hundreds of problems and examples. It is designed to enhance the reader’s problem-solving abilities and understanding of the principles behind algorithm design.
0201120372B04062001


Introduction to Algorithms
by CTI Reviews

Facts101 is your complete guide to Introduction to Algorithms. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

The Algorithm Design Manual
by Steven S Skiena

Most professional programmers that I’ve encountered are not well prepared to tacklealgorithmdesignproblems.Thisisapity,becausethetechniquesofalgorithm design form one of the core practical technologies of computer science. Designing correct, e?cient, and implementable algorithms for real-world problems requires access to two distinct bodies of knowledge: • Techniques – Good algorithm designers understand several fundamental – gorithm design techniques, including data structures, dynamic programming, depth-?rst search, backtracking, and heuristics. Perhaps the single most – portantdesigntechniqueismodeling,theartofabstractingamessyreal-world application into a clean problem suitable for algorithmic attack. • Resources – Good algorithm designers stand on the shoulders of giants. Ratherthanlaboringfromscratchtoproduceanewalgorithmforeverytask, they can ?gure out what is known about a particular problem. Rather than re-implementing popular algorithms from scratch, they seek existing imp- mentations to serve as a starting point. They are familiar with many classic algorithmic problems, which provide su?cient source material to model most any application. This book is intended as a manual on algorithm design, providing access to combinatorial algorithm technology for both students and computer professionals.

Mathematics of Big Data
by Jeremy Kepner, Hayden Jananthan

The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies.

Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges.

The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.



About apujb86