Python For Data Analysis

Python for Data Analysis
by Wes McKinney

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • Use the IPython shell and Jupyter notebook for exploratory computing
  • Learn basic and advanced features in NumPy (Numerical Python)
  • Get started with data analysis tools in the pandas library
  • Use flexible tools to load, clean, transform, merge, and reshape data
  • Create informative visualizations with matplotlib
  • Apply the pandas groupby facility to slice, dice, and summarize datasets
  • Analyze and manipulate regular and irregular time series data
  • Learn how to solve real-world data analysis problems with thorough, detailed examples

Python for Data Analysis
by Wes McKinney

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • Use the IPython shell and Jupyter notebook for exploratory computing
  • Learn basic and advanced features in NumPy (Numerical Python)
  • Get started with data analysis tools in the pandas library
  • Use flexible tools to load, clean, transform, merge, and reshape data
  • Create informative visualizations with matplotlib
  • Apply the pandas groupby facility to slice, dice, and summarize datasets
  • Analyze and manipulate regular and irregular time series data
  • Learn how to solve real-world data analysis problems with thorough, detailed examples

Python Data Science Handbook
by Jake VanderPlas

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.

Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.

With this handbook, you’ll learn how to use:

  • IPython and Jupyter: provide computational environments for data scientists using Python
  • NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python
  • Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python
  • Matplotlib: includes capabilities for a flexible range of data visualizations in Python
  • Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Learn Data Analysis with Python
by A.J. Henley, Dave Wolf

Get started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it.
Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects.
If you aren’t using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished.
What You Will Learn

  • Get data into and out of Python code
  • Prepare the data and its format
  • Find the meaning of the data
  • Visualize the data using iPython

Who This Book Is For
Those who want to learn data analysis using Python. Some experience with Python is recommended but not required, as is some prior experience with data analysis or data science.


Python Data Analytics
by Fabio Nelli

Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You’ll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn.
This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation
Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you’ve learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data.
What You’ll Learn

  • Understand the core concepts of data analysis and the Python ecosystem
  • Go in depth with pandas for reading, writing, and processing data
  • Use tools and techniques for data visualization and image analysis
  • Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch

Who This Book Is For

Experienced Python developers who need to learn about Pythonic tools for data analysis


Getting Started with Python Data Analysis
by Phuong Vo.T.H, Martin Czygan

Learn to use powerful Python libraries for effective data processing and analysis

About This Book

  • Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib
  • Create, manipulate, and analyze your data to extract useful information to optimize your system
  • A hands-on guide to help you learn data analysis using Python

Who This Book Is For

If you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you.

What You Will Learn

  • Understand the importance of data analysis and get familiar with its processing steps
  • Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis
  • Create effective visualizations to present your data using Matplotlib
  • Process and analyze data using the time series capabilities of Pandas
  • Interact with different kind of database systems, such as file, disk format, Mongo, and Redis
  • Apply the supported Python package to data analysis applications through examples
  • Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python library

In Detail

Data analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It’s often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis.

With this book, we will get you started with Python data analysis and show you what its advantages are.

The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems.

Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples.

Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn.

Style and approach

This is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required.


Python Data Analytics
by Fabio Nelli

Python Data Analytics will help you tackle the world of data acquisition and analysis using the power of the Python language. At the heart of this book lies the coverage of pandas, an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
Author Fabio Nelli expertly shows the strength of the Python programming language when applied to processing, managing and retrieving information. Inside, you will see how intuitive and flexible it is to discover and communicate meaningful patterns of data using Python scripts, reporting systems, and data export. This book examines how to go about obtaining, processing, storing, managing and analyzing data using the Python programming language.

You will use Python and other open source tools to wrangle data and tease out interesting and important trends in that data that will allow you to predict future patterns. Whether you are dealing with sales data, investment data (stocks, bonds, etc.), medical data, web page usage, or any other type of data set, Python can be used to interpret, analyze, and glean information from a pile of numbers and statistics.
This book is an invaluable reference with its examples of storing and accessing data in a database; it walks you through the process of report generation; it provides three real world case studies or examples that you can take with you for your everyday analysis needs.


Pandas for Everyone
by Daniel Y. Chen

The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.

Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems.

Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.

Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem.

  • Work with DataFrames and Series, and import or export data
  • Create plots with matplotlib, seaborn, and pandas
  • Combine datasets and handle missing data
  • Reshape, tidy, and clean datasets so they’re easier to work with
  • Convert data types and manipulate text strings
  • Apply functions to scale data manipulations
  • Aggregate, transform, and filter large datasets with groupby
  • Leverage Pandas’ advanced date and time capabilities
  • Fit linear models using statsmodels and scikit-learn libraries
  • Use generalized linear modeling to fit models with different response variables
  • Compare multiple models to select the “best”
  • Regularize to overcome overfitting and improve performance
  • Use clustering in unsupervised machine learning


Data Analysis with Python
by David Taieb

Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis.

Key Features

  • Bridge your data analysis with the power of programming, complex algorithms, and AI
  • Use Python and its extensive libraries to power your way to new levels of data insight
  • Work with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time series
  • Explore this modern approach across with key industry case studies and hands-on projects

Book Description

Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You’ll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You’ll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects.

Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you’re likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis – pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You’ll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence.

What you will learn

  • A new toolset that has been carefully crafted to meet for your data analysis challenges
  • Full and detailed case studies of the toolset across several of today’s key industry contexts
  • Become super productive with a new toolset across Python and Jupyter Notebook
  • Look into the future of data science and which directions to develop your skills next

Who this book is for

This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development.



About apujb86